If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(^2+5)D=0
We multiply parentheses
D^2+5D=0
a = 1; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·1·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*1}=\frac{-10}{2} =-5 $$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*1}=\frac{0}{2} =0 $
| 39=u/5+10 | | -12=m-8+3 | | 39=u/5+109 | | 18c+8c−-10c+-18c+-11c=-7 | | 9b^2=144 | | G(3)=x^2+5x-8 | | 17m-14m=12 | | y=20*0.5^2 | | -3(5p+5)-2(3-11p)=3(6+2p) | | 10x-30=8x-2 | | F(2)=3x^2+2x-6 | | -10+2x=x-4 | | 3(7-n)=9 | | 4x^2+9x+24=0 | | 5x-8-3x=18 | | 3u+18=6u | | x-4=-10x+2 | | 3k-4=11(2k+5) | | f(24)=1/2+5 | | 2(x+1)=2x-4+2x | | 4x√3=4x^2+3 | | 3(7n)=9 | | 8(7v+1)=-160 | | 1 +c=54 | | P=4(120-n)-50n | | 4x=1=-15 | | 7,850=2(3.14)r | | B=5x^2-2x | | 16=2(s-1) | | 2w-w^2=0 | | x+40=2x+40 | | 16=2(s–1) |